New Evaluation Era of Incremental Sliding Window Queries over Data Streams
نویسندگان
چکیده
Two research efforts have been conducted to realize sliding-window queries in data stream management systems, namely, query reevaluation and incremental evaluation. In the query reevaluation method, two consecutive windows are processed independently of each other. On the other hand, in the incremental evaluation method, the query answer for a window is obtained incrementally from the answer of the preceding window. In this paper, we focus on the incremental evaluation method. Two approaches have been adopted for the incremental evaluation of slidingwindow queries, namely, the input-triggered approach and the negative tuples approach. In the input-triggered approach, only the newly inserted tuples flow in the query pipeline and tuple expiration is based on the timestamps of the newly inserted tuples. On the other hand, in the negative tuples approach, tuple expiration is separated from tuple insertion where a tuple flows in the pipeline for every inserted or expired tuple. The negative tuples approach avoids the unpredictable output delays that result from the input-triggered approach. However, negative tuples double the number of tuples through the query pipeline, thus reducing the pipeline bandwidth.
منابع مشابه
Processing Sliding Window Multi-Joins in Continuous Queries over Data Streams
We study sliding window multi-join processing in continuous queries over data streams. Several algorithms are reported for performing continuous, incremental joins, under the assumption that all the sliding windows fit in main memory. The algorithms include multiway incremental nested loop joins (NLJs) and multi-way incremental hash joins. We also propose join ordering heuristics to minimize th...
متن کاملارائه روشی پویا جهت پاسخ به پرسوجوهای پیوسته تجمّعی اقتضایی
Data Streams are infinite, fast, time-stamp data elements which are received explosively. Generally, these elements need to be processed in an online, real-time way. So, algorithms to process data streams and answer queries on these streams are mostly one-pass. The execution of such algorithms has some challenges such as memory limitation, scheduling, and accuracy of answers. They will be more ...
متن کاملIncremental Computation Of Aggregate Operators Over Sliding Windows
Sliding Window is the most popular data model in processing data streams as it captures finite and relevant subset of an infinite stream. This paper studies different Mathematical operators used for querying and mining of data streams. The focus of our study is on operators, operating on the whole data set. These are termed as blocking operators. We have classified these operators according to ...
متن کاملSketch-based Querying of Distributed Sliding-Window Data Streams
While traditional data-management systems focus on evaluating single, adhoc queries over static data sets in a centralized setting, several emerging applications require (possibly, continuous) answers to queries on dynamic data that is widely distributed and constantly updated. Furthermore, such query answers often need to discount data that is “stale”, and operate solely on a sliding window of...
متن کاملMining Recent Frequent Itemsets in Sliding Windows over Data Streams
This paper considers the problem of mining recent frequent itemsets over data streams. As the data grows without limit at a rapid rate, it is hard to track the new changes of frequent itemsets over data streams. We propose an efficient one-pass algorithm in sliding windows over data streams with an error bound guarantee. This algorithm does not need to refer to obsolete transactions when 316 C....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012